Chapter 4

Tissue: The Living Fabric

Part A
Tissues

- Groups of cells similar in structure and function
- The four types of tissues
 - Epithelial
 - Connective
 - Muscle
 - Nerve
Epithelial Tissue

- Cellularity – composed almost entirely of cells
- Special contacts – form continuous sheets held together by tight junctions and desmosomes
- Polarity – apical and basal surfaces; basal surface in contact with basement membrane - the layer of tissue that attaches epithelial tissue to the underlying connective tissue
- Supported by connective tissue – reticular and basal laminae
- Avascular but innervated – contains no blood vessels but supplied by nerve fibers
- Regenerative – rapidly replaces lost cells by cell division
Classification of Epithelia

- **Simple**: one layer; all in contact with basement membrane

- **Stratified**: many layers; several layers of cells above the basement membrane—all are not in contact with basement membrane

Figure 4.1a
Classification of Epithelia

- **Squamous**: thin, flat, irregular shaped (like puzzle pieces)

- **Cuboidal**: hexagonal shaped boxes, round nuclei

- **Columnar**: long, slender, oval nuclei
Epithelia: Simple Squamous

• Single layer of thin, flattened, irregularly shaped cells with disc-shaped nuclei and sparse cytoplasm

• Most delicate type of tissue in the body

• Functions
 • Diffusion and filtration (secretion and absorption)
 • Provide a slick, friction-reducing lining in body cavities (serous membranes-mesothelium) and cardiovascular system (lining of blood vessels-endothelium)

• Present in the kidney glomeruli, lining of heart, blood vessels, lymphatic vessels, and serosa
Epithelia: Simple Squamous

(a) Simple squamous epithelium

Description: Single layer of flattened cells with disc-shaped central nuclei and sparse cytoplasm; the simplest of the epithelia.

Function: Allows passage of materials by diffusion and filtration in sites where protection is not important; secretes lubricating substances in serosas.

Location: Kidney glomeruli; air sacs of lungs; lining of heart, blood vessels, and lymphatic vessels; lining of ventral body cavity (serosas).

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Epithelia: Simple Squamous

(a) Simple squamous epithelium

Description: Single layer of flattened cells with disc-shaped central nuclei and sparse cytoplasm; the simplest of the epithelia.

Function: Allows passage of materials by diffusion and filtration in sites where protection is not important; secretes lubricating substances in serosae.

Location: Kidney glomeruli; air sacs of lungs; lining of heart, blood vessels, and lymphatic vessels; lining of ventral body cavity (serosae).

Photomicrograph: Simple squamous epithelium forming part of the alveolar (air sac) walls (400X).
Epithelia: Simple Cuboidal

- Single layer of cubelike cells with large, spherical central nuclei
- Function in secretion and absorption, limited protection
- Present in kidney tubules, ducts and secretory portions of small glands (salivary and thyroid), pancreas, and ovary surface
Epithelia: Simple Cuboidal

Description: Single layer of cubelike cells with large, spherical central nuclei.

Function: Secretion and absorption.

Location: Kidney tubules; ducts and secretory portions of small glands; ovary surface.

Photomicrograph: Simple cuboidal epithelium in kidney tubules (400×).
Epithelia: Simple Columnar

• Single layer of tall cells with oval nuclei
• Goblet cells are often found in this layer
• Function in absorption and secretion
• Line digestive tract (esp. stomach, small and large intestine) and gallbladder
• Line small bronchi, uterine tubes, and some regions of the uterus
Epithelia: Simple Columnar

(c) Simple columnar epithelium

Description: Single layer of tall cells with oval nuclei; some cells bear cilia; layer may contain mucus-secreting unicellular glands (goblet cells).

Function: Absorption; secretion of mucus, enzymes, and other substances; ciliated type propels mucus (or reproductive cells) by ciliary action.

Location: Nonciliated type lines most of the digestive tract (stomach to anal canal), gallbladder and excretory ducts of some glands; ciliated variety lines small bronchi, uterine tubes, and some regions of the uterus.

Figure 4.2c
Epithelia: Simple Columnar

(c) Simple columnar epithelium

Description: Single layer of tall cells with round to oval nuclei; some cells bear cilia; layer may contain mucus-secreting unicellular glands (goblet cells).

Function: Absorption; secretion of mucus, enzymes, and other substances; ciliated type propels mucus (or reproductive cells) by ciliary action.

Location: Nonciliated type lines most of the digestive tract (stomach to anal canal), gallbladder, and excretory ducts of some glands; ciliated variety lines small bronchi, uterine tubes, and some regions of the uterus.

Photomicrograph: Simple columnar epithelium of the stomach mucosa (1300×).
Epithelia: Pseudostratified Columnar

- Single layer of cells with different heights; all cells in contact with the basement membrane; some do not reach the free surface; always have cilia
- Nuclei are seen at different layers
- Function in secretion and propulsion of mucus
- Present in the male sperm-carrying ducts, fallopian tubes, and respiratory tract (nasal cavity, trachea, bronchii)

Figure 4.2d
Epithelia: Pseudostratified Columnar

Description: Single layer of cells of differing heights, some not reaching the free surface; nuclei seen at different levels; may contain goblet cells and bear cilia.

Function: Secretion, particularly of mucus; propulsion of mucus by ciliary action.

Location: Nonciliated type in male's sperm-carrying ducts and ducts of large glands; ciliated variety lines the trachea, most of the upper respiratory tract.

Photomicrograph: Pseudostratified ciliated columnar epithelium lining the human trachea (400x).

- Cilia
- Mucus of goblet cell
- Pseudostratified epithelial layer
- Basement membrane
- Connective tissue

Figure 4.2d
Epithelia: Stratified Squamous

• Thick membrane composed of several layers of cells
• Function in protection of underlying areas subjected to chemical and mechanical stresses
• Forms the external part of the skin’s epidermis (keratinized cells), and linings of the esophagus, mouth, and vagina (nonkeratinized cells).
Epithelia: Stratified Squamous

(e) Stratified squamous epithelium

Description: Thick membrane composed of several cell layers; basal cells are cuboidal or columnar and metabolically active; surface cells are flattened (squamous); in the keratinized type, the surface cells are full of keratin and dead; basal cells are active in mitosis and produce the cells of the more superficial layers.

Function: Protects underlying tissues in areas subjected to abrasion.

Location: Nonkeratinized type forms the moist linings of the esophagus, mouth, and vagina; keratinized variety forms the epidermis of the skin, a dry membrane.

Photomicrograph: Stratified squamous epithelium lining of the esophagus (300x).
Epithelia: Stratified Cuboidal and Columnar

- **Stratified cuboidal**
 - Quite rare in the body
 - Only superficial layers are cuboidal
 - Found in some sweat and mammary glands
 - Typically two cell layers thick
 - Functions in protection, secretion, and absorption

- **Stratified columnar**
 - Limited distribution in the body
 - Only superficial layers are columnar
 - Found in the pharynx, male urethra, anus, and lining some glandular ducts
 - Also occurs at transition areas between two other types of epithelia
Epithelia: Stratified Columnar

- Several cell layers with cuboidal basal cells and columnar superficial cells
- Functions in protection and secretion
- Present in large ducts of some glands, and in portions of the male urethra
Epithelia: Transitional

- Several cell layers, basal cells are cuboidal, surface cells are dome shaped to permit expansion and recoil.
- Stretches to permit the expansion of the urinary bladder.
- Lines the urinary bladder, ureters, and part of the urethra.

Description:
Resembles both stratified squamous and stratified cuboidal; basal cells cuboidal or columnar; surface cells dome shaped or squamouslike, depending on degree of organ stretch.

Function:
Stretches readily and permits distension of urinary organ by contained urine.

Location:
Lines the ureters, bladder, and part of the urethra.
Epithelia: Transitional

(f) **Transitional epithelium**

- **Description:** Resembles both stratified squamous and stratified cuboidal; basal cells cuboidal or columnar; surface cells dome shaped or squamous-like, depending on degree of organ stretch.

- **Function:** Stretches readily and permits distension of urinary organ by contained urine.

- **Location:** Lines the ureters, bladder, and part of the urethra.

Photomicrograph: Transitional epithelium lining of the bladder, relaxed state (500×); note the bulbous, or rounded, appearance of the cells at the surface; these cells flatten and become elongated when the bladder is filled with urine.
Epithelia: Glandular

• A gland is one or more cells that makes and secretes an aqueous fluid

• Classified by:
 • Site of product release – endocrine or exocrine
 • Relative number of cells forming the gland – unicellular or multicellular
Endocrine Glands

- Ductless glands that produce hormones
- Release their secretions directly into their surrounding environment. These secretions then enter circulation for distribution throughout the body.
- Secretions include amino acids, proteins, glycoproteins, and steroids
Exocrine Glands

• More numerous than endocrine glands
• Secrete their products onto epithelial surfaces (ex. body surfaces (skin) or into body cavities)
• Examples include mucous, sweat, oil, and salivary glands
• The only important unicellular gland is the goblet cell
• Multicellular exocrine glands are composed of a duct and secretory unit
Multicellular Exocrine Glands

- Classified according to:
 - Mode of secretion
 - Type of secretion
 - Structure of the secretory unit
Mode of Secretion

1. Merocrine secretion: product is released through exocytosis. This is the most common mode of secretion

Examples: mucus: a lubricant, protective barrier, and sticky trap that coats the passages of the digestive and respiratory tracts

sweat
2. Apocrine secretion: involves the loss of cytoplasm as well as the intended secretion.

Example: underarm sweat, breast milk (is a merocrine and apocrine secretion)

Both merocrine and apocrine secretion leave the cell intact and able to continue secreting.
3. Holocrine secretion: destroys the gland cell

The cell becomes so packed with secretions that it bursts open (called lysis). This releases the secretions but kills the cell.

Example: oil produced by sebaceous (oil) glands
Types of Secretion

1. Serous gland: secretion is watery and contains enzymes
2. Mucous gland: secretion is a thick mucous
3. Mixed exocrine gland: may produce serous and mucous secretions

One of our salivary glands is a mixed exocrine gland.
Structure of secretory unit

Shape:
- Tubular: glandular cells form tubes
- Alveolar: glandular cells form pockets (circular)
- Tubuloalveolar: glandular cells form tubes and pockets

Branching Pattern
- Simple: duct does not divide on its way to the secretory unit
- Compound: duct does divide on its way to the secretory unit

If several secretory areas share the same duct, the gland is said to be branched
Structural Classification of Multicellular Exocrine Glands

<table>
<thead>
<tr>
<th>Simple duct structure (duct does not branch)</th>
<th>Tubular secretory structure</th>
<th>Alveolar secretory structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Simple tubular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example: intestinal glands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) Simple branched tubular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example: stomach (gastric) glands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) Simple alveolar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example: No important example in humans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) Simple branched alveolar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example: sebaceous (oil) glands</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key:
- ![Surface epithelium](image)
- ![Duct](image)
- ![Secretory epithelium](image)
Structural Classification of Multicellular Exocrine Glands

- **Compound duct structure (duct branches)**
- **Tubular secretory structure**
 - (e) Compound tubular
 - Example: Brunner’s glands of small intestine
- **Alveolar secretory structure**
 - (f) Compound alveolar
 - Example: mammary glands
 - (g) Compound tubuloalveolar
 - Example: salivary glands

Key:
- = Surface epithelium
- = Duct
- = Secretory epithelium

Figure 4.3e-g